РТК – режим для GNSS-оборудования. Всё, о чём вы не постеснялись спросить!

19 августа 2019

«ЭрТэКа» - этот неологизм, обозначающий один из основных режимов работы спутникового геодезического оборудования, прочно прижился в среде геодезистов подобно многим терминам, ставшими нарицательными. Словечко происходит от неправильного «перевода» англоязычной аббревиатуры RTK (Real Time Kinematic), которая «в лоб» по-русски так и пишется - РТК («реал тайм кинематик»). На самом деле данный режим называется «кинематика в реальном времени» и русское сокращение должно бы быть таким – КРВ («КаЭрВэ»), а английская аббревиатура правильно читается как «АрТиКей»! Ну да ладно… Русский язык сейчас вообще стремительно «обогащается» новым сленгом…

Целью данной статьи является попытка разобраться в специфике данного режима работы GNSS-оборудования, геометрической сути такой методики, рассмотреть виды геодезических работ, где возможен и эффективен режим реального времени и какое оборудование для этого может понадобиться. Множество вопросов в службу технической поддержки на эти темы свидетельствует об актуальности такого «ликбеза», несмотря на весьма древнее происхождение методик реального времени в спутниковой геодезии. В связи с активным развитием в последние годы средств коммуникации и спутниковых сетей базовых станций роль режима реального времени многократно возросла, а в ряде работ стала полностью доминирующей.

Геометрическая и физическая сущность режима реального времени

Начнем, пардон, «от печки»… Как известно, одиночный спутниковый прибор любого класса в силу влияния большого количества негативных факторов высокую точность позиционирования не обеспечивает. Во всяком случае точность геодезического уровня. Поэтому при использовании в геодезических работах спутниковых приборов реализован разностный метод определения координат объектов, т.е. по взаимному положению двух точек. В каждой из них находятся приёмники, принимающие сигналы от спутников нескольких GNSS-систем. Один из них расположен на точке с известными координатами – он считается опорным (базовым). Другой, подвижный (ровер) перемещается по точкам, координаты которых требуется определить. В ходе обработки взаимное положение между такими точками может быть в значительной степени исправлено и, соответственно, существенно повышена точность координирования.

Существует два фундаментальных способа работы:

  • с использованием постобработки и
  • в режиме реального времени.

В первом случае все приемники работают автономно и никакой связи между собой не имеют. Важно только, чтобы регистрация измерений производилась одновременно, т.е. на определённом интервале времени выполнялся приём сигналов от одного и того же созвездия спутников. Записанные таким образом данные поступают на совместную обработку в специальное офисное программное обеспечение, которое решает две основные задачи:

  • определение составляющих взаимного положения базовой и подвижной точки с максимально возможной точностью (компоненты вектора «база-ровер») и
  • выполнение, так называемой, дифференциальной коррекции, понятие которой нам очень пригодится при обсуждении режима РТК.

Суть её заключается в присвоении исходной базовой точке известных координат в соответствующей системе отсчета и определении, по компонентам пространственного вектора, координат точки подвижной (определяемой) относительно вновь введённых истинных координат опорной точки.

Поскольку обсуждение подробностей данного режима выходит за рамки данной статьи отметим только, что это наименее оперативный, но и наиболее точный режим работы за счет возможности в течение долгого времени накапливать большие массивы измерений. Это позволяет в процессе обработки добиться максимальной компенсации погрешностей и получить точность координат на уровне миллиметров.

Данный режим, известный под названием «Статика» («Быстрая статика») используется при сгущении геодезических опорных сетей, развитии съёмочного обоснования, опорных базисов и других твердых пунктов. Этот же режим для съёмочных работ в более оперативном варианте называется «Стой-Иди» («Stop and Go») и тоже подразумевает постобработку в офисном ПО.

Во втором случае хоть и выполняются все те же действия: решение вектора между двумя приемниками и дифференциальная коррекция, но реализованы они совершенно иначе. Мало того, что вся обработка происходит в реальном времени, непосредственно в полевом компьютере (контроллере), между приемниками необходимо наличие надежного канала связи для обмена данными. Все настройки, управление съёмкой, обмен данными и регистрацию результатов обеспечивает полевое программное обеспечение, функционал и удобство которого во многом определяют успех оборудования у пользователей. Варианты способов коммуникации между приемниками и необходимое для этого оборудование мы рассмотрим в следующих разделах.

Поскольку данный режим позволяет оперативно, непосредственно на объекте работ получать готовые координаты точек, то он преимущественно используется для съёмочных работ и для выноса в натуру (разбивки) точек и называется «Кинематикой в реальном времени» или RTK.

Как же это работает?

При запуске съёмки на опорном (базовом) приёмнике в полевом ПО необходимо указать точные известные координаты для данной точки в соответствии с ранее назначенной проекту системой отсчета (системой координат). В последующем ПО имеет возможность сравнить текущее приближённое решение с известными значениями и сформировать разности координат для базовой точки. Эти разности в народе именуют «поправками», которые базовый приёмник и отправляет на подвижный (ровер) по тому или иному каналу связи. На самом деле в составе корректирующей информации кроме «поправок» передаётся гораздо больше данных, вплоть до параметров системы координат, но сейчас на этом заострять внимание не будем.

Подвижный приёмник, работая недалеко от базовой станции (до нескольких десятков километров), находится приблизительно в равных с базой условиях приёма спутниковых сигналов и имеет близкий к ней уровень погрешностей определения координат. Таким образом ПО контроллера, находящегося на подвижном приёмнике, приняв корректирующую информацию от базы имеет возможность исправить результаты своей работы в реальном масштабе времени.

Если в проекте полевого контроллера верно произведена настройка системы координат и на объекте обеспечен надёжный канал доставки корректирующей информации, то можно сказать, что ровер выдает сразу готовые точные координаты. Это позволяет выполнять как оперативные съёмочные работы, так и вынос в натуру (разбивку) различных объектов.

Важно отметить, что наличие одного лишь сервиса предоставления корректирующей информации от базовой станции без привязки к местным исходным пунктам геодезической сети и правильной настройки рабочей системы координат не может обеспечить высокоточное абсолютное позиционирование.

Вопросы использования проекций, настройки в контроллере систем координат, в том числе условных локальных, а также применения процедуры калибровки (локализации) района работ заслуживают рассмотрения в отдельной статье.

Каналы связи для режима RTK

Теперь о связи. Сам по себе режим RTK никак не зависит именно от способа коммуникации. Важно, чтобы связь была стабильна на необходимом расстоянии от базового приёмника до ровера. На современном этапе можно выделить четыре категории средств доставки «поправок» к подвижному приёмнику:

  • радиоканалы в УКВ-диапазоне;
  • сети мобильной связи GSM/GPRS с голосовыми каналами или посредством выхода в Интернет;
  • новомодные WiFi, дальнобойный Bluetooth и т.п.;
  • глобальный сервис, использующий спутниковый L-диапазон или Интернет.

В зависимости от условий и специфики работ выбирается тот или иной вариант или их комбинация. Соответственно имеется широкий выбор оборудования в дополнение к основному комплекту приёмник-контроллер.

Кстати о комплектах. В зависимости от используемой технологии комплект может включать от двух и более спутниковых приёмников, включая базовый, плюс оборудование для связи. И наоборот, в связи с бурным развитием сетей опорных базовых станций, комплект может состоять из компактного ровера-моноблока с полевым ПО в смартфоне или даже одно комбинированное устройство в конструктиве наладонного накопителя…

Использование УКВ (UHF) диапазона

Исторически раньше всего на службе RTK использовались радиомодемы УКВ-диапазона. Корнями этот способ связи уходит в береговые сервисы для морской навигации и до сих пор незаменим в регионах, не обеспеченных надежным покрытием сотовой связи. В настоящее время используются устройства, работающие в основном в диапазоне частот 400-470 МГц с мощностью передачи от 0.5 до 30-40 Вт.

Приёмник может иметь встроенный в свой корпус маломощный радиомодуль и компактную УКВ-антенну. В зависимости от условий распространения радиосигнала на объекте дальность обслуживания может составлять от сотен метров до нескольких километров.

Мощные радиомодемы – это отдельные устройства с радиаторами охлаждения и самостоятельными аккумуляторными блоками питания. В комплект таких модемов входят антенны различных габаритов и конструкций, устройства для их установки, кабели различной длины, сечения и назначения, а также вспомогательные аксессуары. На равнинной открытой местности мощные радиомодемы обеспечивают дальность обслуживания до нескольких десятков километров.

Практически все радиомодемы умеют работать в режиме ретранслятора (репитера), что позволяет дополнительно расширить зону обслуживания RTK, а также обеспечить работу на территории со сложным рельефом или при наличии препятствий.

Использование голосовой связи GSM

Бурное развитие сетей сотовой связи позволило кардинально расширить возможности спутникового оборудования в режиме RTK. Дальность взаимодействия стала регламентироваться лишь охватом территории сотовыми сетями и методическими ограничениями спутниковых технологий. Габариты оборудования связи ужались до размеров смартфонов и гнезд для SIM-карт. Поскольку для взаимодействия спутниковых приборов используются голосовые каналы сотовой связи работа тарифицируется как обычный разговор двух абонентов, а на тарифе необходима соответствующая услуга пакетной передачи данных. Для настройки связи достаточно роверу указать мобильный номер базы, что не в пример проще, чем согласовать целый ряд настроек для УКВ-модемов.

Использование Интернет соединения (GPRS)

Следующим шагом стало развитие Интернет-технологий связи. У базовых приемников появилась возможность вещать корректирующую информацию в сеть Интернет. А для подвижных приёмников стал доступен многопользовательский доступ к этим данным. В отличие от GSM-связи «точка-точка» протокол NTRIP предоставляет множеству пользователей индивидуальные идентификаторы и пароли для безопасного RTK-подключения к источнику «поправок» в сети Интернет.

Выход в Сеть обеспечивается посредством всё тех же SIM-карт сотовых операторов, а малый трафик и доступные тарифы гарантируют меньшие затраты на связь в геодезическом производстве.

Возможность организации взаимодействия между базовыми приёмниками позволила развивать сетевые RTK-технологии, объединяя базовые станции в пределах целых регионов. Это позволило обеспечить высокоточными геодезическими измерениями большие территории с однородной системой отсчета.

Сети базовых станций. Технология VRS

О сетях постоянно действующих базовых станций (ПДБС) стоит поговорить отдельно. Если такая сеть присутствует в регионе предстоящих работ, то это мощный инструмент для использования технологий RTK. Кроме этого базовые станции по умолчанию регистрируют «сырые» GNSS-данные и всегда могут быть использованы при постобработке собственных статических измерений пользователей спутниковой геодезической аппаратуры. Базовые станции (БС) – это комплекты спутниковых приёмников модульной конструкции, стационарно расположенные на охраняемых объектах, например, офисных зданиях, где им обеспечены хорошие условия обзора небосвода и стабильный выход в сеть Интернет. Проект сети (места установки одиночных базовых станций) разрабатывается заранее с соблюдением геометрических требований к ее конфигурации. Кроме обеспечения коммуникационных возможностей базовая станция должна быть оснащена специальным сетевым программным обеспечением.

Являясь одним из компонентов разностного спутникового решения стационарная базовая станция позволяет пользователю, имея лишь одиночный комплект GNSS-приёмника (сетевой ровер), успешно выполнять широкий спектр высокоточных геодезических работ на расстояниях в десятки километров от неё.

Однако, имеется важный нюанс... Сама по себе одиночная базовая станция, передавая корректирующую информацию, обеспечивает лишь одну составляющую RTK-технологии – точное позиционирование ровера относительно точки установки антенны БС. Если эта точка изначально не привязана относительно местной опорной сети геодезических пунктов в соответствующей системе координат, то и координаты ровера данной системе отсчета соответствовать не будут.

Базовые станции будучи объединены в сеть позволяют максимально гибко использовать возможности RTK, обслуживая роверы на минимальном их удалении от баз. Венцом сетевых возможностей является технология VRS – виртуальных базовых станций. Станции сети объединены каналами связи и управляются из единого центра. Специальное сетевое программное обеспечение на основе данных приёмников сети может смоделировать результаты измерений в любом месте территории, охваченной сетью, и сформировать поток «поправок» от данной точки. Ровер, передав сведения о своём местоположении, получает решение от смоделированной рядом виртуальной БС. Это гарантирует высокую точность работы в любом месте сети.

Глобальные и облачные сервисы

Ну и наконец несколько слов о глобальных сетевых решениях для обеспечения режима RTK.

Глобальный дифференциальный сервис известен давно и основан на расчетах не по фазе несущей спутникового сигнала, а по коду. Точность позиционирования не высока – от полуметра до полутора метров. Называется такой режим – DGPS. Это уже не грубый навигатор, но и до геодезического уровня еще далеко. Тем не менее такой точности достаточно не только для решения навигационных задач, но и, например, для сбора данных об объектах местности для ГИС. Корректирующая информация передается по тому же спутниковому каналу в L-диапазоне, а формируется она на основе данных глобальной (общемировой) сети базовых станций.

Современная реализация глобального дифференциального сервиса позволяет получить субдециметровую точность координат одиночным роверным приёмником если имеется подписка на данную услугу. Примером такой службы является Trimble CenterPoint RTX. «Поправки» могут передаваться как по спутниковому каналу, так и через Интернет. В течении получаса инициализации точность позиционирования сходится к 4 см и даже лучше в любом месте зоны покрытия данного сервиса.

«Вишенкой на торте» глобальной RTK-технологии стала система Trimble Catalyst. Это пример, так называемой, концепции «Позиционирование как услуга». Комплект включает компактную недорогую спутниковую антенну и устройство на ОС Android с ПО. Несколько вариантов подписки на глобальный сервис обеспечивают различные уровни точности в зависимости от задач – от метровой до сантиметровой.

Особняком стоит технология RTK-съёмки с использованием облачных сервисов, как глобальных, так и локальных. В любом случае «облака» реализуются на распределенных в сети Интернет серверах. Такой функционал имеется и в современных моделях приёмников, рекомендуемых для базовых станций. Это некая программа диспетчер - посредник, обеспечивающий каналы связи между базовыми и подвижными приёмниками, имеющими подключение к сети Интернет. Базовый приёмник, расположенный на опорной точке, вещает поток «поправок» в облако, а подвижные приёмники их оттуда забирают.

Примером облачной глобальной службы является Spectra Precision Central. При наличии активной лицензионной поддержки ПО контроллера можно зарегистрироваться на сервере службы и получить доступ к облачному сервису для приёмников Spectra Geospatial.

В заключении

Итак, мы рассмотрели основные аспекты теоретических основ и аппаратной реализации такого современного и эффективного метода спутниковых геодезических измерений как Кинематика реального времени (RTK). Развитие современных средств коммуникации позволило значительно расширить его возможности и обеспечить геодезические работы гибким и высокоточным инструментарием.

Для получения подробной информации по всему спектру геодезического оборудования обращайтесь к менеджерам и службе технической поддержки компании «Геодезия и Строительство».

Присоединяйтесь к нам :)
					
Корзина

Корзина пуста :(

Быстрый заказ
Корзина пуста